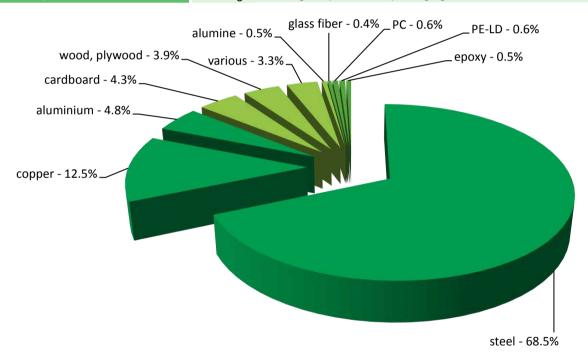
Product Environmental Profile

ATV930 IP00 315KW 400V/480V 3PH W/O BRAKING

Altivar Process -VARIABLE SPEED DRIVE 220 to 315kW 400V/480V- 3PH - IP21

ENVPEP1607002EN_V2 07/2016


General information

Representative product	ATV930 IP00 315KW 400V/480V 3PH W/O BRAKING -ATV930C31N4C
Description of the product	The main function of the Altivar Process product range is the speed control and variation of a synchronous, asynchronous or reluctance electric motor for fluid management and industrial applications.
Description of the range	Altivar Process -VARIABLE SPEED DRIVE 220 to 315kW 400V/480V- 3PH - IP21 The environmental impacts of this referenced product are representative of the impacts of the other products of the range which are developed with a similar technology.
Functional unit	To adapt the speed and torque of synchronous, asynchronous or reluctance motor to the machine's operating point. Calculation of the environmental impacts is based on 10 years of product service lifetime. The usage profile taken into account is 80% uptime in use phase at 75% loading rate and 20% uptime in stand by phase.

Constituent materials

222135 g including the product, its packaging and additional elements and accessories

事!

Substance assessment

Products of this range are designed in conformity with the requirements of the RoHS directive (European Directive 2011/65/EU of 8 June 2011) and do not contain, or only contain in the authorised proportions, lead, mercury, cadmium, hexavalent chromium or flame retardants (polybrominated biphenyls - PBB, polybrominated diphenyl ethers - PBDE) as mentioned in the Directive

As the products of the range are designed in accordance with the RoHS Directive (European Directive 2002/95/EC of 27 January 2003), they can be incorporated without any restriction in an assembly or an installation subject to this Directive.

Details of ROHS and REACH substances information are available on the Schneider-Electric Green Premium website http://www2.schneider-electric.com/sites/corporate/en/products-services/green-premium/green-premium.page

ENVPEP1607002EN_V2 07/2016

Additional environmental information

The ATV	930 IP00 315KW 400V/480V 3PH W/O BRAKING presents the following relevent environmental aspects						
Design	Products are designed to be "Green Premium".						
Manufacturing	Manufactured at a Schneider Electric production site ISO14001 certified						
Distribution	Weight and volume of the packaging optimized, based on the European Union's packaging directive Packaging weight is 19135 g, consisting of cardboard (44.81%) paper (0.50%) paper packaging label (1.62%) PE bag + PE wedge (8.15%) wood pallet (44.45%) dessicant (2.09%) Product distribution optimised by setting up local distribution centres						
Installation	Does not require any special installation operations						
Use	The product does not require special maintenance operations.						
End of life	End of life optimized to decrease the amount of waste and allow recovery of the product components and materials This product contains Electronic Card (147596g) Electrolyte capacitors (1920.0g) Battery (2.9 g) Cable (431.8g) LCD (6.7g) that should be separated from the stream of waste so as to optimize end-of-life treatment.						
	The location of these components and other recommendations are given in the End of Life Instruction document which is available on the Schneider-Electric Green Premium website						
	http://www2.schneider-electric.com/sites/corporate/en/products-services/green-premium/green-premium.page						
	Based on "ECO'DEEE recyclability and recoverability calculation method" Recyclability potential: 87% (version V1, 20 Sep. 2008 presented to the French Agency for Environment and Energy Management: ADEME).						

P Environmental impacts

Reference life time	10 years
Product category	Active products
Installation elements	No special components needed
Use scenario	Consumed power is 7868 W 80 % of the time in Active mode, 182 W 20 % of the time in Standby mode, W 0 % of the time in Sleep mode and W 0 % of the time in Off mode. The product is in active mode 80% of the time with a power use of 7868W, in stand-by mode 20% of the time with a power use of 182W, for 10 years.
Geographical representativeness	Worldwide
Technological representativeness	The main function of the Altivar Process product range is the speed control and variation of a synchronous, asynchronous or reluctance electric motor for fluid management and industrial applications.

ENVPEP1607002EN_V2 07/2016

	Manufacturing	Installation	Use	End of life
Energy model used	Energy model used: China	Electricity Mix; AC; consumption mix, at consumer; < 1kV; EU-27	Electricity Mix; AC; consumption mix, at consumer; < 1kV; EU- 27	Electricity Mix; AC; consumption mix, at consumer; < 1kV; EU- 27

Compulsory indicators		ATV930 IPO	00 315KW 400V/	480V 3PH W/O	BRAKING - A	TV930C31N	4C
Impact indicators	Unit	Total	Manufacturing	Distribution	Installation	Use	End of Lif
Contribution to mineral resources depletion	kg Sb eq	1.60E-01	1.45E-01	0*	0*	1.49E-02	0*
Contribution to the soil and water acidification	kg SO ₂ eq	2.49E+03	1.04E+01	0*	0*	2.48E+03	0*
Contribution to water eutrophication	kg PO ₄ ³- eq	9.43E+01	1.45E+00	3.01E-02	0*	9.28E+01	1.89E-02
Contribution to global warming	kg CO ₂ eq	3.30E+05	2.80E+03	0*	0*	3.27E+05	3.94E+01
Contribution to ozone layer depletion	kg CFC11 eq	7.97E-02	1.95E-04	0*	0*	7.95E-02	0*
Contribution to photochemical oxidation	kg C₂H₄ eq	1.18E+02	7.78E-01	0*	0*	1.17E+02	0*
Resources use	Unit	Total	Manufacturing	Distribution	Installation	Use	End of Life
Net use of freshwater	m3	8.76E+02	2.24E+01	0*	0*	8.54E+02	0*
Total Primary Energy	MJ	5.71E+06	5.65E+04	0*	0*	5.65E+06	0*
100% — 90% —							
Contribution to Contribution to Contribution to mineral the soil and water resources water eutrophical depletion acidification	global w	varming o		ontribution to notochemical oxidation	Net use of freshwater	Total Pri Enerç	

Optional indicators	ATV930 IP00 315KW 400V/480V 3PH W/O BRAKING - ATV930C31N4C						
Impact indicators	Unit	Total	Manufacturing	Distribution	Installation	Use	End of Life
Contribution to fossil resources depletion	MJ	3.41E+06	3.26E+04	4.03E+02	0*	3.37E+06	0*
Contribution to air pollution	m³	1.45E+07	4.12E+05	0*	0*	1.40E+07	2.19E+03
Contribution to water pollution	m³	1.40E+07	2.31E+05	4.71E+03	0*	1.37E+07	3.32E+03
Resources use	Unit	Total	Manufacturing	Distribution	Installation	Use	End of Life
Use of secondary material	kg	6.47E+01	6.47E+01	0*	0*	0*	0*
Total use of renewable primary energy resources	MJ	4.76E+05	1.54E+03	0*	0*	4.75E+05	0*
Total use of non-renewable primary energy resources	MJ	5.23E+06	5.49E+04	0*	0*	5.17E+06	0*
Use of renewable primary energy excluding renewable primary energy used as raw material	MJ	4.76E+05	1.18E+03	0*	0*	4.75E+05	0*

■Manufacturing ■Distribution ■Installation ■Use ■End of life

ENVPEP1607002EN_V2 07/2016

Use of renewable primary energy resources used as raw material	MJ	3.62E+02	3.62E+02	0*	0*	0*	0*
Use of non renewable primary energy excluding non renewable primary energy used as raw material	MJ	5.23E+06	5.47E+04	0*	0*	5.17E+06	0*
Use of non renewable primary energy resources used as raw material	MJ	2.63E+02	2.63E+02	0*	0*	0*	0*
Use of non renewable secondary fuels	MJ	0.00E+00	0*	0*	0*	0*	0*
Use of renewable secondary fuels	MJ	0.00E+00	0*	0*	0*	0*	0*
Waste categories	Unit	Total	Manufacturing	Distribution	Installation	Use	End of Life
Hazardous waste disposed	kg	4.51E+03	4.25E+03	0*	2.66E+01	0*	2.40E+02
Non hazardous waste disposed	kg	1.23E+06	5.97E+03	0*	0*	1.22E+06	0*
Radioactive waste disposed	kg	9.99E+02	3.94E-01	0*	0*	9.98E+02	0*
Other environmental information	Unit	Total	Manufacturing	Distribution	Installation	Use	End of Life
Materials for recycling							
···9	kg	2.09E+02	2.62E+01	0*	1.17E+01	0*	1.71E+02
Components for reuse	кg kg	2.09E+02 0.00E+00	2.62E+01 0*	0* 0*	1.17E+01 0*	0* 0*	1.71E+02 0*
	•			•		•	

^{*} represents less than 0.01% of the total life cycle of the reference flow

Life cycle assessment performed with EIME version EIME v5.5, database version 2015-04.

The use phase is the life cycle phase which has the greatest impact on the majority of environmental indicators (based on compulsory indicators).

According to this environmental analysis, proportionality rules may be used to evaluate the impacts of other products of this range.

The mineral resources depletion of the product of the family maybe proportional extrapolated by mass of product.

And the other environmental indicators of the range may be proportional extrapolated by power consumption of the product.

Please note that the values given above are only valid within the context specified and cannot be used directly to draw up the environmental assessment of an installation.

Registration N°	ENVPEP1607002_V2	Drafting rules	PCR-ed3-EN-2015 04 02			
Date of issue	07/2016					
Validity period	5 years	Information and reference documents	www.pep-ecopassport.org			
Independent verification of the declaration and data in compliance with ISO 14025 : 2010						

Independent verification of the declaration and data, in compliance with ISO 14025 : 2010

Internal X External

The elements of the present PEP cannot be compared with elements from another program.

Document in compliance with ISO 14025 : 2010 « Environmental labels and declarations. Type III environmental declarations »

Schneider Electric Industries SAS

Customer Care Center
www.schneider-electric.com/contact
35, rue Joseph Monier
CS 30323
F- 92506 Rueil Malmaison Cedex
RCS Nanterre 954 503 439

www.schneider-electric.com

Capital social 896 313 776 €

Published by Schneider Electric

ENVPEP1607002EN_V2

© 2019 - Schneider Electric - All rights reserved